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A B S T R A C T   

In a search of new antitubercular agents, herein we have reported a series of new thirty-two indanol-1,2,3- 
triazole derivatives. The synthesized compounds were screened for their in vitro antitubercular and antimicrobial 
activities. Among the screened compounds, most of the compounds have displayed good antitubercular activity 
against Mycobacterium tuberculosis H37Rv. The compound 5g has been identified as potent antitubercular agent 
with MIC value 1.56 µM. The most active compounds of the series were further studied for their cytotoxicity 
against HEK 293 cells using MTT assay and found to be nontoxic. In addition, ten compounds were shown good 
antimicrobial activities against both antibacterial and antifungal pathogens. A molecular docking study against 
Mycobacterial enoyl-ACP-reductase (InhA) was performed to gain an insight into the molecular mechanism of 
antitubercular action. The pharmacokinetic parameters of these compounds were studied and displayed ac-
ceptable drug-likeness score.    

The world is facing many health problems.1 As per Global Tu-
berculosis Report-2019, tuberculosis (TB) is among the top ten reasons 
of death worldwide.2 It is a communicable disease and infected by the 
bacillus Mycobacterium tuberculosis. It gets spread when people who are 
sick with TB expel bacteria into the air; for example, by coughing. It 
normally affects the lungs (pulmonary TB) but can also affect other sites 
(extrapulmonary TB).3 The one-fourth of the world’s population is in-
fected with M. tuberculosis. The drug-resistant tuberculosis and co-in-
fection with HIV are two leading health concerns about the tubercu-
losis. It is observed that the control of tubercular spread has become 
one of the main health concern in the world.4 As constrained treatment 
options for multi-drug resistant (MDR-TB) and extensively drug re-
sistant (XDR-TB) are available, TB research community is facing the 
challenge of synthesizing new anti-TB drugs with novel modes of ac-
tion.5 According to the WHO, resistance to the most effective first-line 
antibiotic rifampicin for tuberculosis, occurred in approximately six 
lacks cases in 2017. Among these cases, approximately 82% were re-
sistant to multiple treatment options. Since the discovery of Rifampicin 

(RIF) 40 years ago, only few promising anti-TB drugs have been in-
vented.6Hence, it is an urgent requirement to design and synthesis of 
new antitubercular and antimicrobial agents.7 

Indanol derivatives are endowed with various biological activities 
such as antiviral, insecticidal, hypotension, anti-inflammatory, CNS 
depressant, antimicrobial, anti-HIV, antagonistic, antihypertensive, and 
antitubercular.8–13 Similarly, the 1,2,3-triazole derivatives are im-
portant target molecules for the researchers worldwide due their 
pharmaceutical applications.14 It includes anti-tubercular,15 anti-
fungal,16 α-glycosidase inhibitors,17 antibacterial, anti-allergic and anti- 
HIV.18 Molecular hybridization is a classical approach for the design of 
new bioactive compounds.19,20 This molecular hybridized compounds 
could have more solubility and oral bioavailability in some extents. In 
literature, many 1,2,3-triazole derivatives coupled with another moi-
eties are reported.21,22 Triazole based antitubercular agent A (I-A09) 
(Fig. 1) is under pre-clinical trials.23 The compound B (Fig. 1) from the 
novel 3-trifluromethyl pyrazolo-1,2,3-triazole hybrids emerged as the 
most promising antitubercular agent with lowest cytotoxicity.24 1-aryl- 
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4-linked 1,2,3-triazole based compound C (Fig. 1) identified potent new 
candidate with improved aqueous solubility.25 The compound D 
(Fig. 1) from the 5-nitrofuran triazole conjugates showed promising 
antitubercular activity.26 Isoniazid embedded triazole compound E 
(Fig. 1) exhibited potent antitubercular activity with low cytotoxicity.27 

In continuation of our ongoing research on synthesis of new anti-
tubercular and antimicrobial agents,28,29 herein we have synthesized 
new indanol-1,2,3-triazole derivatives (5a-p & 7a-p) by employing 
click chemistry approach. The synthesized compounds were screened 
for their in vitro antimycobacterial activity against Mycobacterium tu-
berculosis H37Rv (MTB). In addition, in vitro antimicrobial activities 
were also evaluated. 

The reaction sequence followed for the synthesis of indanol-1,2,3- 
triazole derivatives (5a-p & 7a-p) is as shown in Schemes 1–3. In the 
first step, the key intermediate 5-(prop-2-ynyloxy)-2,3-dihydro-1H-in-
dene (3) was synthesized by propargylation of 5-indanol (1) in the 
presence of potassium carbonate in DMF at room temperature with 85% 
yield. The click reactions of 5-(prop-2-ynyloxy)-2,3-dihydro-1H-indene 
(3) and freshly prepared substituted phenyl azides (4a-p) were per-
formed in the presence of copper acetate and sodium ascorbate to give 
the corresponding 4-(2,3-dihydro-1H-inden-5-yloxy)methyl)-1-phenyl- 
1H-1,2,3-triazole derivatives (5a-p) with 80–90% yields. 

Similarly, the click reactions of 5-(prop-2-ynyloxy)-2,3-dihydro-1H- 
indene (3) and freshly prepared substituted 2-azidoN-phenylacetamides 
(6a-p) were afforded the corresponding 2-(4-((2,3-dihydro-1H-inden-5- 
yloxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamide derivatives 
(7a-p) with 85–97% yields. The structures of newly synthesized in-
danol-1,2,3-triazole derivatives (5a-p & 7a-p) were assigned by their 
IR, 1H NMR, 13C NMR and HRMS spectral data analysis. 

The indanol-1, 2, 3-triazole derivatives (5a-p) and (7a-p) were 
evaluated for their in vitro antitubercular activity against Mycobacterium 
tuberculosis H37Rv strain.30,31 These compounds have displayed ex-
cellent antitubercular activity compared to first line antitubercular 
drugs, ciprofloxacin and ethambutol (Table 1). The compound 5g with 

2, 4-dimethyl substituted benzene ring has displayed excellent anti-
tubercular activity with MIC value 1.56 µM, which is more potent than 
ethambutol and equivalent to another standard drug, ciprofloxacin. The 
three compounds 5h, 5j and 5m having 2, 4, 6-trimethyl, 2-bromo and 
2-flouro substituted benzene ring, respectively were shown significant 
antitubercular activity with MIC value 6.25 µM. The compound 7b with 
2-methoxy phenyl acetamido moiety has shown good antitubercular 
activity against Mycobacterium tuberculosis H37Rv strain with MIC value 
6.25 µM. The four compounds 5b, 5c, 5e and 5i having 2-methoxy, 3- 
methoxy, 3-methyl and 2-methyl, 5-nitro substituted benzene ring, re-
spectively were displayed noticeable antitubercular activity with MIC 
value 12.5 µM. The compounds 5a and 5d having benzene ring and 4- 
methoxy substituted benzene ring respectively showed good anti-
tubercular activity with MIC value 25 µM (Table 1). It has been ob-
served that the phenyl-1,2,3-triazole derivatives (5a-p) were displayed 
better antitubercular activity than the phenylacetamido-1,2,3-triazole 
derivatives (7a-p). These obtained results will be useful for further 
identification of more potent antitubercular agents. 

The indanol-1,2,3-triazole derivatives 5a, 5b, 5c, 5d, 5e, 5g, 5h, 5i, 
5j, 5m and 5b were found to be most active against Mycobacterium 
tuberculosis H37Rv strain. The in vitro cytotoxicity of active indanol- 
1,2,3-triazole derivatives were assessed by 3-(4, 5-dimethylthiazol-2- 
yl)-2, 5-diphenyltetrazolium bromide (MTT) assay against growth in-
hibition of HEK 293 (Human Embryonic Kidney) cells at 25 μM con-
centration (Table 1).32,33 It has been observed that these active indanol- 
1, 2, 3-triazole derivatives does not exhibit strong cytotoxicity towards 
the HEK 293 (Human Embryonic Kidney). 

All the newly synthesized indanol-1, 2, 3-triazole derivatives were 
evaluated for their in vitro antimicrobial activities by using agar well 
diffusion method.34,35 The antibacterial screening was executed against 
Gram-positive S. aureus, B. cereus, B. subtilis and Gram-negative E. 
aerogenes, E. coli, S. typhi, P. aeruginosa, S. boydii, S. abony pathogens. 
The antifungal screening was executed against A. niger, C. albicans and 
S. cerevisiae fungal pathogens. Among the screened indanol-1, 2, 3- 
triazole derivatives, 5d, 5g, 5i, 5j, 5k, 5p, 7a, 7b, 7k and 7p were 
shown excellent antimicrobial activities (Table 2). The minimum in-
hibitory concentration (MIC) values were determined for the most ac-
tive indanol-1, 2, 3-triazole derivatives. (Table 3). 

In order to investigate the probable mechanism by which the syn-
thesized indanol-1, 2, 3-triazole derivatives can exhibit the anti-
tubercular activity and to establish an SAR based on the results of in 
vitro assay, molecular docking study against the critical mycobacterial 
target enoyl-ACP-reductase (InhA) was performed. In the absence of 

Fig. 1. Representative 1, 2, 3-triazole derivatives having antitubercular activity.  

Scheme 1. Synthesis of 5-(prop-2-ynyloxy)-2,3-dihydro-1H-indene (3).  
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available resources to perform the enzyme-based assays, molecular 
docking has received significant importance to find the targets for dif-
ferent ligands and their associated thermodynamic interactions that 
direct the inhibition of the pathogen. Mycobacterial enoyl-ACP-re-
ductase (InhA), an enzyme contributing to mycolic acids biosynthesis, 
has been recognized as a promising target of novel antitubercular drugs. 
Mycolic acids are very long chain (C74-C90) α-alkyl β-hydroxy fatty 
acids covalently linked to arabino-galactan that form the major com-
ponents of the mycobacterial cell envelope providing them protection 
from antibiotics and are also found responsible for mycobacterial 
virulence.36 The biosynthesis of mycolic acids is catalyzed by two en-
zyme systems namely, fatty acid synthase I (FAS I) that produces the 
shorter chain fatty acids and fatty acid synthase II (FAS II) which is 
involved in elongation of fatty acids chain. InhA catalyzes the trans- 
enoyl reduction which is the final step of FAS II pathway. Inhibition of 
enoyl-ACP-reductase (InhA) disrupts the integrity of mycobacterial cell 
wall via inhibiting mycolic acid biosynthesis and remains a most pro-
mising approach towards antitubercular drug design. In addition, tria-
zole containing heterocycles have shown the potential to inhibit InhA 
which encouraged the selection of this target to gauze the binding af-
finity of the title compounds towards this crucial cell wall target.37,38 

A molecular docking study have shown that the compounds occu-
pied an energetically favorable position in the active site cavity of InhA 
with varying level of affinities at the co-ordinates close to the co-crys-
tallized ligand. They have created good to moderate docking scores 
ranging from −8.95 (glide binding energy of −51.716 kcal/mol) for 
the active compound to −7.072 (glide energy −40.444 kcal/mol) for a 
moderately active one with an average docking score of −7.677 (glide 
energy −43.953 kcal/mol). The binding arrangement and thermo-
dynamic interaction of compounds 5b, 5c, 5e, 5h, 5i, 5j, 5m and 7b 
with InhA enzyme is given in Supplementary material (Table S1, Figs. 
S75–S82). These binding affinity scores were found to be in harmony 
with the experimentally observed antitubercular activity. To achieve 
more insight into binding pattern and types of thermodynamics 

Scheme 2. Synthesis of 4-((2,3-dihydro-1H-inden-5-yloxy)methyl)-1-phenyl-1H-1,2,3-triazole derivatives (5a-p).  

Scheme 3. Synthesis of 2-(4-((2,3-dihydro-1H-inden-5-yloxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamide derivatives (7a-p).  

Table 1 
MIC values and cytotoxicity activities of indanol-1, 2, 3-triazole derivatives.     

Compound MIC against Mtb H37Rv strain 
(μM) 

% Inhibition Cytotoxicity at 
25 μM  

5a 25 23.39 
5b 12.5 19.81 
5c 12.5 25.78 
5d 25 21.09 
5e 12.5 23.44 
5f  > 25 ND 
5g 1.56 19.86 
5h 6.25 16.56 
5i 12.5 26.53 
5j 6.25 16.51 
5k  > 25 ND 
5l  > 25 ND 
5m 6.25 20.97 
5n  > 25 ND 
5o  > 25 ND 
5p  > 25 ND 
7a  > 25 ND 
7b 6.25 23.35 
7c  > 25 ND 
7d  > 25 ND 
7e  > 25 ND 
7f  > 25 ND 
7g  > 25 ND 
7h  > 25 ND 
7i  > 25 ND 
7j  > 25 ND 
7k  > 25 ND 
7l  > 25 ND 
7m  > 25 ND 
7n  > 25 ND 
7o  > 25 ND 
7p  > 25 ND 
Ciprofloxacin 1.56 ND 
Ethambutol 3.125 ND 
ND: Not determined 
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interactions guiding the anchoring of these ligands into the target, a 
per-residue interaction analysis between the InhA enzyme and these 
compounds was performed. 

The most active indanol-1, 2, 3-triazole derivative 5g produced the 
highest docking score of −8.95 with a Glide binding energy of 
−51.716 kcal/mol (Table S1). The lowest energy docked conformation 
of 5g showed that it is deeply embedded into the active pocket of InhA 
(Fig. 2), which can be explained in terms of significant bonded and non- 
bonded interactions with amino acid residues lining the active site. The 
per-residue interaction analysis showed that the two scaffolds i.e. the 
indanol and triazole showed a well-balanced network of favorable steric 

interactions with the active site residues. The triazole nucleus portrayed 
very closed van der Waals interactions with Leu218 (−2.986 kcal/ 
mol), Ile215 (−3.283 kcal/mol), Ile202 (−2.825 kcal/mol), Pro193 
(−2.884 kcal/mol), Gly192 (−2.974 kcal/mol), Ala191 (−2.958 kcal/ 
mol), Ala157 (−2.853 kcal/mol), Pro156 (−2.943 kcal/mol), Met155 
(−2.888 kcal/mol), Met103 (−3.192 kcal/mol), while phenyl sub-
stituted 1,2,3-triazole scaffold showed similar type of interactions with 
Met199 (−3.516 kcal/mol), Ala198 (−2.878 kcal/mol), Thr196 
(−2.976 kcal/mol), Ile194 (−2.796 kcal/mol), Met161 (−3.132 kcal/ 
mol), Tyr158 (−3.666 kcal/mol), Phe149 (−3.14 kcal/mol), Asp148 
(−2.876 kcal/mol), Met147 (−2.816 kcal/mol), Met98 (−2.879 kcal/ 

Table 2 
Antimicrobial activity of synthesized indanol-1, 2, 3-triazole derivatives.               

Compounds Antibacterial pathogens Antifungal pathogens 

S. aureus B. cerus B. subtilis E. aerogenes E. coli S. typhi P. aeruginosa S. boydii S. abony A. niger C. albicans S. cerevisiae  

5a 07 – – – – – – – – – 12 08 
5b 10 – – – – – – – – – 10 – 
5c 12 – – – 10  09 13 11  12 – 
5d 08 05 10 09 10 08 12 11 12 06 11 05 
5e 06 – – – – – – – – – 10 13 
5f – – – – – – – – – – 12 – 
5g 07 10 10 10 12 12 13 11 09 10 11 12 
5h – – – – – – – – – – – – 
5i 13 12 12 11 11 11 09 11 09 06 15 06 
5j 16 09 10 12 11 11 13 12 13 07 09 10 
5k 19 10 17 16 15 08 14 20 14 06 14 07 
5l – – – – 08 – – – – – 11 07 
5m 15 – – – – – – – – – 09 10 
5n 08 – – – – – – – – – 10 08 
5o 07 – – – – – – – – – 13  
5p 08 13 12 14 12 08 11 10 08 06 12 07 
7a 23 12 12 16 11 12 10 11 11 09 13 12 
7b 12  10 13 10 12 08 12 11 10 12 10 
7c – – – – – – – 15 – – – – 
7d – – – – – – – – – – – – 
7e – – – – – – – 11 – – – – 
7f 08 – – – – – – – – – 12 – 
7g – – – – – – – 13 – – – – 
7h – – – – – – –  – – – – 
7i – – – 12 – – 09 09 – – – – 
7j – – – – – – –  – – – – 
7k 10 10 12 12 13 13 09 11 07 08 10 05 
7l 08 – – – – – – – – – 15 10 
7m 13 – – – – – – 11 – – 13 – 
7n – – – 12 – – 05 13 – – – 12 
7o – – – – – – – 11 – – – – 
7p 10 12 11 10 10 10 06 10 10 05 10 09 
Tetracycline 29 33 32 33 29 33 32 34 32 NA NA NA 
Fluconazole NA NA NA NA NA NA NA NA NA 30 30 30 
(–): Inactive; NA: Not applicable 

Table 3 
MIC values of the most potent indanol-1, 2, 3-triazole derivatives (μg/mL).         

Compounds Pathogens 

S. aureus E. aerogenes S. boydii A. niger C. albicans S. cerevisiae  

5d 160 130 70 180 80 210 
5g 150 75 55 70 60 50 
5i 50 60 60 155 40 150 
5j 90 120 140 170 130 110 
5k 100 150 130 190 100 160 
5p 165 70 90 220 125 180 
7a 140 80 130 170 85 110 
7b 120 95 150 170 180 210 
7k 135 110 140 190 165 230 
7p 140 145 140 220 150 135 
Tetracycline 20 30 20 NA NA NA 
Fluconazole NA NA NA 08 25 12 
NA: Not applicable 
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mol), Phe97 (−2.924 kcal/mol), Gly96 (−2.956 kcal/mol), Ile95 
(−2.973 kcal/mol), Ser94 (−2.477 kcal/mol), Ile21 (−2.775 kcal/ 
mol), Ser20 (−2.995 kcal/mol) residues. The enhanced binding affinity 
of 5 g is also attributed to relatively lesser but prominent electrostatic 
interactions observed with Met199 (−2.994 kcal/mol), Lys165 
(−4.835 kcal/mol), Tyr158 (−2.953 kcal/mol), Met147 
(−2.967 kcal/mol), Gly96 (−2.914 kcal/mol) and Ser20 
(−2.993 kcal/mol) residues. The binding of 5g was stabilized by hy-
drogen bond and a pi-pi stacking interaction. The nitrogen atom of the 
triazole ring formed a close hydrogen bond with Tyr158 (2.30 Å). The 
same triazole ring also showed a prominent pi-pi stacking interaction 
with Tyr158 (1.992 Å). Such hydrogen-bonding and the pi-pi (π-π) 
stacking interactions serve as “anchor” to guide the ligand into the 
active site of enzyme and facilitate the steric and electrostatic interac-
tions. 

Overall, these results of the molecular docking study and specially 
the per-residue ligand interaction analysis have shown that the indanol 
and triazole nucleus act synergistically to attach with the active site of 
InhA and the substitutions around these scaffolds improve the binding 
affinity. These results suggest that indanol-1, 2, 3-triazole derivatives 
have significant affinity for this crucial mycobacterial target InhA and 
qualify this dimeric scaffold as a promising initiation point for struc-
ture-based lead optimization. In silico ADME properties of newly syn-
thesized compounds were studied. The results obtained indicate the 
good % ABS ranging from 69.36 to 95.21 and acceptable drug-likeness 
score (Supplementary material, Table S2). 

In summary, a series of new thirty-two indanol-1, 2, 3-triazole de-
rivatives were synthesized via click chemistry approach. The synthe-
sized compounds were evaluated for their in vitro antitubercular ac-
tivity against Mycobacterium tuberculosis H37Rv. The compound 5g has 
been identified as an excellent antitubercular agent. It has anti-
tubercular activity with an equivalent to the standard drug, cipro-
floxacin having the MIC value 1.56 µM. Whereas, the other ten com-
pounds, 5a, 5b, 5c, 5d, 5e, 5h, 5i, 5j, 5m and 7b have exhibited good 
antitubercular activity with MIC values ranging from 1.56 to 12.5 µM. 
The active antitubercular indanol-1, 2, 3-triazole derivatives were 
evaluated for their cytotoxic effects against HEK 293 (Human 
Embryonic Kidney) cells. These derivatives did not exhibited cytotoxi-
city towards the HEK 293 cells (Human Embryonic Kidney). In addi-
tion, indanol-1, 2, 3-triazole derivatives 5d, 5g, 5i, 5j, 5k, 5p, 7a, 7b, 
7k and 7p has shown good in vitro antimicrobial activities. A molecular 
docking study was performed to investigate the mode of action of in-
danol-1, 2, 3-triazole derivatives. These compounds have displayed a 
high affinity towards the active site of Mycobacterial enoyl-ACP-re-
ductase (InhA) enzyme. In silico ADME properties of these newly 

synthesized compounds were studied. It has been indicated the accep-
table drug-likeness score. We feel that the inspiring results obtained will 
be a good platform for identification of new potent antitubercular and 
antimicrobial agents. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.bmcl.2020.127579. 
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ABSTRACT
A series of new hydrazones bearing pyridyl and thiazolyl scaffolds
have been synthesized and evaluated for their in vitro anticancer
and antimicrobial activities. The anticancer activity was evaluated
against the A549 lung cancer cell line. The eight hydrazone deriva-
tives have shown better anticancer activity than positive control
doxorubicin against the A549 lung cancer cell line. The antimicrobial
activity was evaluated against bacterial and fungal pathogens by
using well diffusion method. The four hydrazone derivatives have
displayed good antimicrobial activities. Molecular docking studies of
the synthesized hydrazone derivatives revealed good binding via
hydrogen bond interactions with key residues on active sites as well
as neighboring residues with an active site of Focal adhesion kinase
(PDB ID 2JKO). A computational study for the prediction of absorp-
tion, distribution, metabolism, and excretion (ADME) properties of all
compounds has also been performed.
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Introduction

Cancer has become the most common life-threatening disease representing a major
health problem worldwide. In spite of the extensive research in cancer therapy, there is
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still an increasing need for new treatments for cancer.[1] The discovery of new chemo-
therapeutics is of prime importance due to the essential ability of tumor cells to develop
resistance to current agents. The development of multiple drug resistance to antitumor
drugs is a major problem in chemotherapy. Hence, research for the invention of novel
agents for treating cancer is of prime importance.[2] It has also been reported that lung
cancer is the prominent cause of cancer-related deaths.[3] The most common lung can-
cer i.e. non-small cell lung cancer (NSCLC) poses a continuous and serious threat to
public health. In spite of significant improvements in both diagnostic and therapeutic
approaches, the overall survival for NSCLC patients remain poor.[4] One main obstacle
for the treatment of NSCLC is that most patients are diagnosed at a late stage when the
prognosis is poor and therapeutic options are limited.[5]

Diversely substituted thiazole derivatives embedded with a variety of functional
groups are found to exist in a large number of well-known naturally occurring com-
pounds such as thiamin and commercial synthetic drugs.[6] A literature survey revealed
that thiazole derivatives are found to have many therapeutic activities such as anti-
cancer,[7] antimicrobial,[8] anti-inflammatory,[9] antioxidants,[10] antihypertension[11]

and antitubercular.[12] Functionalized pyridines are accompanying many pharmaco-
logical activities, such as antioxidant, antimicrobial,[13] b-glucuronidase[14] and cytotox-
icity against several human cancer cell lines.[15] Fused heterocyclic compounds with
pyridinyl and thiazolyl rings in a molecular frame are common structural designs with
substantial applications in medicinal chemistry.[16]

In particular, many studies have pointed out the pivotal role of the hydrazone moiety
for anticancer drug development.[17] The synthesis of the hydrazone derivatives have
been found to paid more attention due to their antitumor activity against various cancer
cell lines such as A549 human lung adenocarcinoma, MCF-7 human breast adenocar-
cinoma, U-373MG human glioblastoma, SK-OV-3 human ovary carcinoma, SK-MEL-2
human melanoma, HCT15 human colon carcinoma, MIA PaCa-2 human pancreas car-
cinoma and HepG2 human hepatocellular carcinoma cell lines.[18] Some of the repre-
sentative compounds with pyridine, thiazole and hydrazone scaffolds, reported in the
literature [19–22] are shown in Figure 1.
Recently, we have reported the synthesis, anticancer and antimicrobial activities of

some hydrazone derivatives starting from an antitubercular drug, ethionamide.[23]

Considering the biological significance of pyridines, thiazoles and substituted hydra-
zones and in continuation of our ongoing research on the synthesis of new bioactive
molecules,[24] herein we have reported a new series of pyridyl and thiazolyl clubbed
hydrazone derivatives (6a–k) with anticancer and antimicrobial activities starting from
an antitubercular drug, prothionamide.

Results and discussions

Chemistry

The reaction sequence employed for the synthesis of the hydrazone derivatives (6a–k)
has been shown in Scheme 1. In the first step, 2-propylpyridine-4-carbothioamide (1)
and ethyl 3-bromo-2-oxopropanoate (2) were refluxed in ethanol for 5 h to obtain
ethyl 2-(2-propylpyridin-4-yl)thiazole-5-carboxylate (3) with 85% yield. The ethyl
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2-(2-propylpyridin-4-yl)thiazole-5-carboxylate (3) was condensed with hydrazine
hydrate in refluxed ethanol to furnish a key intermediate, 2-(2-propylpyridin-4-yl)thia-
zole-5-carbohydrazide (4) with 76% yield. The condensations of aromatic aldehydes
(5a–k) and 2-(2-propylpyridin-4-yl)thiazole-5-carbohydrazide (4) was carried out in dii-
sopropylethylammonium acetate (DIPEAc) to obtain the corresponding substituted (E)-
N’-benzylidene-2-(2-propylpyridin-4-yl)thiazole-5-carbohydrazides (6a–k) with 80-90%
yields. The obtained products were purified by crystallization using ethanol.
The structures of synthesized (E)-N’-benzylidene-2-(2-propylpyridin-4-yl)thiazole-5-

carbohydrazides (6a–k) were established based on their 1H and 13C NMR spectral data
and satisfactory HRMS analysis. The IR spectrum of hydrazone 6b shows characteristic
peaks at 3273 and 1663 cm�1 indicate the presence of amide N–H and amido carbonyl
groups, respectively. The 1H NMR spectrum of 6b displays two singlet peaks at d 8.40
and 10.52 ppm indicates the presence of thiazolyl-H and amide N–H, respectively.
According to the literature, the singlet at deshielded region, d¼ 8.27–8.87 ppm indicates

Figure 1. Pyridine, thiazole, and hydrazone containing bioactive molecules.

Scheme 1. Reaction conditions: (i) EtOH, reflux, 5 h; (ii) H2N–NH2.H2O, EtOH, reflux, 4 h; (iii) DIPEAc,
rt, 30min.
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the presence of -CH¼N signal, exclusively accounts for the formation of E-isomers.[25]

In 13C NMR spectrum of 6b, the peaks at d 14.04, 23.24, and 40.58 ppm are due to the
carbons of the n-propyl group attached to a pyridine ring. The peak at d 166.69 ppm
indicates the presence of the amide carbonyl group. The HRMS analysis of compound
6b, displays (MþH)þ peak at 419.0501 for its molecular formula C19H16Cl2N4OS. The
spectral data of the remaining compounds are consistent with the assigned structures.

Anticancer activity

All the synthesized hydrazones (6a–k) were screened for their in vitro anticancer activ-
ity against A549 lung cancer cell line by using MTT assay.[26] The compounds dilutions
(lM) were prepared in DMSO. The compounds were added to the 24 h grown A549
cells in RPMI 1640 with FBS (10% v/v). The seeding density for the cell line was
>5� 103 cells per well/200mL of medium. The cells were incubated for 24 h. The IC50

was determined by using an EIA scan at 570 nm (Figure 2). Inhibition of cell prolifer-
ation by these active compounds at various concentrations was measured and their IC50

(the concentration that causes a 50% cell proliferation inhibition) values were calculated
and summarized in Table 1. The doxorubicin was used as a positive control. The com-
pounds with IC50 lower than 20 lM are found to be active against the cells.
In the present study, we have prepared hydrazones having electron-withdrawing sub-

stituents. The nitro substituent at ortho position displayed better anticancer activity as
compared to meta and para position. The hydrazones with halogen substituents at all
positions (ortho, meta and para) have shown good anticancer activity. Exceptionally, the
compound 6i with ortho-chloro substituent on the aryl ring showed a very week activ-
ity. In fact, out of eleven hydrazone derivatives, seven derivatives having one or more
either chloro or bromo showed better effects than the positive control, doxorubicin
against A549 lung cancer cells.

Antimicrobial activity

The newly synthesized hydrazone derivatives (6a-k) were screened for in vitro antibac-
terial activity against bacterial strains Staphylococcus aureus ATCC 6538, Bacillus mega-
terium ATCC 2326, Bacillus subtilis ATCC 6633, Escherichia coli ATCC8739, Salmonella
typhi ATCC9207, Shigella boydii ATCC 12034, Enterobacter aerogenes ATCC13048,
Pseudomonas aeruginosa ATCC9027, Salmonella abony NCTC6017 and antifungal activ-
ity against fungal strains Aspergillus niger ATCC 16404, Saccharomyces cereviseae ATCC
9763, Candida albicans ATCC10231. Antimicrobial activity was performed by using a
well diffusion method.[27] Streptomycin and fluconazole were used as antibacterial and
antifungal standard reference compounds, respectively. The results of antibacterial and
antifungal activities in the zone of inhibition (mm) are presented in Table 2.
The structure-activity relationship analysis revealed that among the hydrazone deriva-

tives (6a–k), compound 6b (R¼ 3, 5-Dichloro) and 6c (R¼ 4-Chloro) showed moderate
activity against almost all the pathogens. The compounds 6e (R¼ 3-Nitro), 6f (R¼ 2-
Nitro) and 6g (R¼ 3-Chloro) have shown moderate activity against pathogens S. typhi,
E. aerogenes, B. subtilis, S. aureus, A. niger, and C. albicans. The convincing
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antimicrobial activity of synthesized hydrazones (6a–k) in our preliminary screening
(Table 2) leads us to determine the minimum inhibitory concentration. The MIC was
deduced by following the method and guidelines of the Clinical and Laboratory
Standard Institute (CLSI) (Table 3). In this study, the MIC was determined for the most
potent selected antimicrobial compounds 6b, 6e, 6f, and 6g.

Molecular docking study

Docking analysis was utilized to establish the mode of action of synthesized hydrazones
(6a-k) for their anticancer potential. Grip based docking analysis was performed keep-
ing protein structure in rigid conformation and ligand structures in flexible conform-
ation with cocrystallized bis-anilino pyrimidine inhibitor as a reference molecule.[28]

Molecular docking was performed using the crystal structure of the Focal adhesion kin-
ase (PDB ID 2JKO). Focal adhesion kinase is a key regulator of cell division and prolif-
eration and it also possesses all the critical attributes to act as a promising anticancer
target. The compound 6c was found to be interacting with the formation of two hydro-
gen bond interactions with ILE428, GLU430 and hydrophobic interactions with
ASN551, GLY563, ASP564, LEU567 (Figure 3). The compound 6f showed hydrogen
bond interaction with GLU430 and hydrophobic interactions with GLY429 and
GLU430 (Figure 4). The bonding interactions of the remaining compounds are given in
supplementary material.

ADME predictions

ADME predictions of all the synthesized hydrazone derivatives (6a–k) were predicted
using Swiss ADME portal (Table 4).[29] All the molecules have shown excellent

Figure 2. Antiproliferative action of hydrazone derivatives (6a–k).
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Table 1. Antiproliferative activity of hydrazone derivatives (6a–k).

Entry Compounds (6a-k) IC50 (µM)

6a 3.83 ± 0.23

6b 3.81 ± 0.20

6c 3.11 ± 0.10

6d 4.27 ± 0.15

6e 50.92 ± 0.55

6f 3.04 ± 0.10

6g 5.84±0.20

6h 3.46 ± 0.40

6i 79.83 ± 0.37

6j 20.92 ± 0.18

6k 3.61 ± 0.15
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physicochemical parameters with low Lipinski violation, which is desirable for the oral
absorption of drug candidates.

Experimental

The commercially available laboratory grade chemicals were used. The IR spectra were
recorded on Brucker FT-IR spectrometer. The 1H and 13C NMR spectra were recorded
on Brucker DRX-400 NMR spectrometer. The trimethylsilane (TMS) was used as an
internal standard. The coupling constants (J) are reported in hertz (Hz).

Synthesis of substituted (E)-N0-benzylidene-2-(2-propylpyridin-4-yl)thiazole-5-
carbohydrazides (6a–k)

The substituted aromatic aldehydes (5a–k) (1.0mmol) and 2-(2-propylpyridin-4-yl)thia-
zole-5-carbohydrazide (4) (1.0mmol) was dissolved in diisopropylethylammonium

Table 3. MIC values of most potent antimicrobial hydrazone derivatives (lg/mL).
Entry B. subtilis E. aerogenes C. albicans

6b 90 ± 0.47 170 ± 0.83 150 ± 0.78
6c 260 ± 1.67 120 ± 0.54 280 ± 2.19
6f 75 ± 1.12 85 ± 0.76 210 ± 1.57
6g 120 ± 2.37 150 ± 1.43 250 ± 0.75
Streptomycin 25 ± 0.34 30 ± 0.59 NA
Fluconazole NA NA 30± 0.17

NA: not applicable.

Figure 3. Docking interactions of 6c.
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acetate (DIPEAc) (5ml) and stirred at room temperature for 30min. After completion
of reaction, the reaction mixture was poured on cold water. The solid obtained was fil-
tered and washed with cold water. The products obtained were crystallized from ethanol
to furnish corresponding substituted (E)-N0-benzylidene-2-(2-propylpyridin-4-yl)thia-
zole-5-carbohydrazides (6a–k)with 80–90% yields

(E)-N0-(3,5-Dichloro-2-hydroxybenzylidene)-2-(2-propylpyridin-4-yl)thiazole-5-
carbohydrazide (6a)

Yield: 85%; M. P.: 220–222 �C; IR (Neat) m cm�1: 3424, 3116, 2907, 2840, 1682, 1600,
1534, 1444, 1347, 1285, 1222, 1177, 994, 849, 796, 717; 1H NMR (400MHz, CDCl3)
d¼ 1.08 (t, J¼ 6.7Hz, 3H, CH3), 1.90 (m, 2H, CH2), 2.93 (t, J¼ 6.7Hz, 2H, CH2),
7.39–7.38 (m, 1H, Ar–H), 7.44 (s, 1H, Ar–H), 7.77 (d, J¼ 12.9Hz, 2H, Ar–H), 8.45 (s,
1H, thiazolyl–H), 8.69 (s, 2H, Ar–H), 11.23 (s, 1H, Ar–OH), 12.00 (s, 1H, amido–NH);

Figure 4. Docking interactions of 6f.

Table 4. Pharmacokinetic parameters of hydrazone derivatives (6a–k).
Entry H-bond acceptors H-bond donors MR TPSA XLOGP3 Bioavailability score

6a 5 2 113.14 115.71 4.88 0.55
6b 4 1 111.11 95.48 5.23 0.55
6c 4 1 106.1 95.48 4.61 0.55
6d 4 1 108.79 95.48 4.67 0.55
6e 6 1 109.92 141.3 3.81 0.55
6f 6 1 109.92 141.3 3.81 0.55
6g 4 1 106.1 95.48 4.61 0.55
6h 4 1 108.79 95.48 4.67 0.55
6i 4 1 106.1 95.48 4.61 0.55
6j 6 1 109.92 141.3 3.81 0.55
6k 4 1 111.11 95.48 5.23 0.55
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13C NMR (100MHz, CDCl3þDMSO-d6) d¼ 13.87, 23.06, 29.62, 119.55, 122.62, 123.73,
126.69, 128.43, 131.28, 139.33, 148.88, 149.31, 150.17, 152.94, 156.59, 166.33; HRMS
(ESI)þ calcd. for C19H16Cl2N4O2S [MþH]þ: 435.0371 and found 435.0443.

Conclusions

In summary, we have reported new pyridyl and thiazolyl clubbed hydrazone scaffolds
starting from an antitubercular drug, prothionamide. The synthesized hydrazone deriva-
tives were evaluated for their in vitro antitumor activity against the A549 lung cancer
cells. As compared to the standard drug, doxorubicin, the hydrazones 6a, 6b, 6c, 6d, 6f,
6g, 6h, and 6k were shown better inhibitory activity with MIC values 3.83, 3.81, 3.11,
3.04, 4.27, 5.84, 3.46, and 3.61lM, respectively. The synthesized hydrazone derivatives
have also been evaluated for their antimicrobial activity against gram-positive and
gram-negative pathogens. Among them, hydrazone derivatives 6b, 6c, 6f, and 6g have
displayed good antimicrobial activities. Besides, the molecular docking study was per-
formed using the crystal structure of the Focal adhesion kinase (PDB ID 2JKO). We
believe these results laid a foundation for further improving the potency and the select-
ivity of this series of compounds as anticancer and antimicrobial agents.
Full experimental detail, 1H and 13C NMR spectra, HRMS spectra and docking

images, these materials can be found via the “Supplementary Content” section of this
article’s webpage.
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